3.3.27 \(\int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [227]

Optimal. Leaf size=166 \[ \frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{6 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{4 a^2 d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

(1/8+1/8*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(5/2)/d-1/4*I*tan(d*x+c)^(1/2)/
a^2/d/(a+I*a*tan(d*x+c))^(1/2)+1/5*I*tan(d*x+c)^(5/2)/d/(a+I*a*tan(d*x+c))^(5/2)+1/6*tan(d*x+c)^(3/2)/a/d/(a+I
*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 166, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {3627, 3625, 211} \begin {gather*} \frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}-\frac {i \sqrt {\tan (c+d x)}}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{6 a d (a+i a \tan (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((1/8 + I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(5/2)*d) + ((I/5)*Ta
n[c + d*x]^(5/2))/(d*(a + I*a*Tan[c + d*x])^(5/2)) + Tan[c + d*x]^(3/2)/(6*a*d*(a + I*a*Tan[c + d*x])^(3/2)) -
 ((I/4)*Sqrt[Tan[c + d*x]])/(a^2*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3627

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*b*f*m)), x] - Dist[(a*c - b*d)/(2*b^2), Int[(a + b*Tan[e
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && LeQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx &=\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx}{2 a}\\ &=\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{6 a d (a+i a \tan (c+d x))^{3/2}}-\frac {\int \frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx}{4 a^2}\\ &=\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{6 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {i \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{8 a^3}\\ &=\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{6 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 a d}\\ &=\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{6 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.22, size = 177, normalized size = 1.07 \begin {gather*} \frac {i e^{-4 i (c+d x)} \left (\sqrt {-1+e^{2 i (c+d x)}} \left (-3+11 e^{2 i (c+d x)}-23 e^{4 i (c+d x)}\right )+15 e^{5 i (c+d x)} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right ) \sqrt {\tan (c+d x)}}{60 \sqrt {2} a^2 d \sqrt {-1+e^{2 i (c+d x)}} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((I/60)*(Sqrt[-1 + E^((2*I)*(c + d*x))]*(-3 + 11*E^((2*I)*(c + d*x)) - 23*E^((4*I)*(c + d*x))) + 15*E^((5*I)*(
c + d*x))*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Sqrt[Tan[c + d*x]])/(Sqrt[2]*a^2*d*E^((4*I)
*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 574 vs. \(2 (130 ) = 260\).
time = 0.17, size = 575, normalized size = 3.46

method result size
derivativedivides \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (148 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )+60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )-60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-308 i \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+90 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+60 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -220 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{240 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{4} \sqrt {-i a}}\) \(575\)
default \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (148 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )+60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )-60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-308 i \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+90 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+60 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -220 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{240 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{4} \sqrt {-i a}}\) \(575\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/240/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/a^3*(148*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/
2)*tan(d*x+c)^3+60*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*
x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3-15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(
1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^4-60*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c
)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)-308*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)
))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2+90*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/
2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2+60*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)-
15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+
I))*a-220*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
/(-tan(d*x+c)+I)^4/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 332 vs. \(2 (120) = 240\).
time = 0.58, size = 332, normalized size = 2.00 \begin {gather*} -\frac {{\left (30 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (i \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - 30 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-i \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-23 i \, e^{\left (6 i \, d x + 6 i \, c\right )} - 12 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 8 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - 3 i\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/120*(30*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(I*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(I*d*x + I*c) +
 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e
^(2*I*d*x + 2*I*c) + 1)) - 30*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-I*a^3*d*sqrt(1/8*I/(a^5*d^2
))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d
*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x +
 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(-23*I*e^(6*I*d*x + 6*I*c) - 12*I*e^(4*I*d*x + 4*I*c) + 8*I*e^(2*I*d*x
 + 2*I*c) - 3*I))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tan ^{\frac {5}{2}}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral(tan(c + d*x)**(5/2)/(I*a*(tan(c + d*x) - I))**(5/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {tan}\left (c+d\,x\right )}^{5/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(5/2), x)

________________________________________________________________________________________